Exercise 10

As in Exercise 9, consider a spring with mass m, spring constant k, and damping constant $c=0$, and let $\omega=\sqrt{k / m}$. If an external force $F(t)=F_{0} \cos \omega t$ is applied (the applied frequency equals the natural frequency), use the method of undetermined coefficients to show that the motion of the mass is given by

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t+\frac{F_{0}}{2 m \omega} t \sin \omega t
$$

Solution

To obtain the equation of motion for a mass attached to a spring that experiences damping and has an external force $F(t)$ applied to it, use Newton's second law.

$$
\begin{gathered}
\sum F=m a \\
F(t)-c \frac{d x}{d t}-k x=m \frac{d^{2} x}{d t^{2}}
\end{gathered}
$$

Solve for $F(t)=F_{0} \cos \omega t$ and set $c=0$, since the damping is negligible.

$$
m \frac{d^{2} x}{d t^{2}}+k x=F_{0} \cos \omega t
$$

Divide both sides by m.

$$
\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=\frac{F_{0}}{m} \cos \omega t
$$

Let $\omega^{2}=k / m$.

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=\frac{F_{0}}{m} \cos \omega t \tag{1}
\end{equation*}
$$

Since this ODE is linear, the general solution can be expressed as the sum of a complementary solution and a particular solution.

$$
x=x_{c}+x_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
\frac{d^{2} x_{c}}{d t^{2}}+\omega^{2} x_{c}=0 \tag{2}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $x=e^{r t}$.

$$
x_{c}=e^{r t} \quad \rightarrow \quad \frac{d x_{c}}{d t}=r e^{r t} \quad \rightarrow \quad \frac{d^{2} x_{c}}{d t^{2}}=r^{2} e^{r t}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r t}+\omega^{2}\left(e^{r t}\right)=0
$$

Divide both sides by $e^{r t}$.

$$
r^{2}+\omega^{2}=0
$$

Solve for r.

$$
r=\{-i \omega, i \omega\}
$$

Two solutions to equation (2) are $e^{-i \omega t}$ and $e^{i \omega t}$. By the principle of superposition, then,

$$
\begin{aligned}
x_{c}(t) & =C_{1} e^{-i \omega t}+C_{2} e^{i \omega t} \\
& =C_{1}(\cos \omega t-i \sin \omega t)+C_{2}(\cos \omega t+i \sin \omega t) \\
& =\left(C_{1}+C_{2}\right) \cos \omega t+\left(-i C_{1}+i C_{2}\right) \sin \omega t \\
& =C_{3} \cos \omega t+C_{4} \sin \omega t,
\end{aligned}
$$

where C_{3} and C_{4} are arbitrary constants. On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
\frac{d^{2} x_{p}}{d t^{2}}+\omega^{2} x_{p}=\frac{F_{0}}{m} \cos \omega t \tag{3}
\end{equation*}
$$

Since the inhomogeneous term is a cosine function, the particular solution would be $x_{p}=A \cos \omega t+B \sin \omega t$. $\cos \omega t$ satisfies the homogeneous equation, though, so an extra factor of t is needed: $x_{p}=t(A \cos \omega t+B \sin \omega t)$.

$$
\begin{aligned}
x_{p} & =t(A \cos \omega t+B \sin \omega t) \\
\frac{d x_{p}}{d t} & =(A \cos \omega t+B \sin \omega t)+t(-A \omega \sin \omega t+B \omega \cos \omega t) \\
\frac{d^{2} x_{p}}{d t^{2}} & =(-A \omega \sin \omega t+B \omega \cos \omega t)+(-A \omega \sin \omega t+B \omega \cos \omega t)+t\left(-A \omega^{2} \cos \omega t-B \omega^{2} \sin \omega t\right)
\end{aligned}
$$

Substitute these formulas into equation (3).

$$
\begin{aligned}
{[(-A \omega \sin \omega t+B \omega \cos \omega t)+(-A \omega \sin \omega t+B \omega \cos \omega t)} & \left.+t\left(-A \omega^{2} \cos \omega t-B \omega^{2} \sin \omega t\right)\right] \\
& +\omega^{2}[t(A \cos \omega t+B \sin \omega t)]=\frac{F_{0}}{m} \cos \omega t
\end{aligned}
$$

Simplify the left side.

$$
2 \omega B \cos \omega t-2 \omega A \sin \omega t=\frac{F_{0}}{m} \cos \omega_{0} t
$$

Match the coefficients to get a system of equations involving A and B.

$$
\begin{aligned}
2 \omega B & =\frac{F_{0}}{m} \\
-2 \omega A & =0
\end{aligned}
$$

Solving it yields $A=0$ and $B=F_{0} /(2 m \omega)$. Therefore, the particular solution is

$$
x_{p}=\frac{F_{0}}{2 m \omega} t \sin \omega t,
$$

and the general solution to equation (1) is

$$
\begin{aligned}
x(t) & =x_{c}+x_{p} \\
& =C_{3} \cos \omega t+C_{4} \sin \omega t+\frac{F_{0}}{2 m \omega} t \sin \omega t .
\end{aligned}
$$

